Structure and Strength at Immiscible Polymer Interfaces
نویسندگان
چکیده
منابع مشابه
Changes in thermodynamic interactions at highly immiscible polymer/polymer interfaces due to deuterium labeling.
Deuterium labeling has been shown previously to affect thermodynamic interactions at polymer surfaces, polymer/polymer heterogeneous interfaces, and in bulk (away from a surface or interface). However, the changes in polymer-polymer interactions due to deuterium labeling have not been thoroughly investigated for highly immiscible systems. It is shown here that deuterium labeling can influence p...
متن کاملMolecular structure of polystyrene at Air/Polymer and Solid/Polymer interfaces
IR-visible sum-frequency generation (SFG) spectroscopy has been used in a total internal reflection geometry to study the molecular structure of polystyrene (PS) at PS/sapphire and PS/air interfaces, simultaneously. The symmetric vibrational modes of the phenyl rings dominate the SFG spectra at the PS/air interface as compared to the antisymmetric vibrational modes at the PS/sapphire interface....
متن کاملSurfactant-Polymer Systems at Interfaces
Insoluble surfactant monolayers at the air/water interface undergo a phase transition from a high-temperature homogeneous state to a low-temperature demixed state, where dilute and dense phases coexist. Alternatively, the transition from a dilute phase to a dense one may be induced by compressing the monolayer at constant temperature. We consider the case where the insoluble surfactant monolaye...
متن کاملAdhesion mechanisms at soft polymer interfaces.
Based on several significant examples, we analyse the adhesion mechanisms at soft polymer interfaces with a special emphasis first on the role of connector molecules, that is, polymer chains bound to the interface and which transmit stress through a stretching and extraction mechanism, and second on the necessary relay that must be taken by additional dissipation mechanisms acting at larger sca...
متن کاملBimodal crystallization at polymer-fullerene interfaces.
The growth-kinetics of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) crystals, on two different length-scales, is shown to be controlled by the thickness of the polymer layer within a PCBM-polymer bilayer. Using a model amorphous polymer we present evidence, from in situ optical microscopy and grazing-incidence X-ray diffraction (GIXD), that an increased growth-rate of nanoscale crystals im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Macro Letters
سال: 2013
ISSN: 2161-1653,2161-1653
DOI: 10.1021/mz400407m